skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alam, Md Tahmidul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 3 kV breakdown voltage was demonstrated in monolithic bidirectional Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) having potential applications in 1200 V or 1700 V class power converters. The on-resistance of the fabricated transistors was ∼20 Ω.mm (∼11 mΩ.cm2). The breakdown voltage was optimized with two field plates on either side of the transistor. Shorter first field plate lengths (≤2 μm) resulted in higher breakdown voltage and the possible reason was discussed. The transistors had a steep subthreshold swing of 92 mV dec−1. The fabricated transistor was benchmarked against the state-of-the-art monolithic bidirectional GaN HEMTs in the performance matrices of breakdown voltage—on resistance, that showed crucial progress. 
    more » « less
  2. Abstract High voltage (∼2 kV) Al0.64Ga0.36N-channel high electron mobility transistors were fabricated with an on-resistance of ∼75 Ω. mm (∼21 mΩ. cm2). Two field plates of variable dimensions were utilized to optimize the breakdown voltage. The breakdown voltage reached >3 kV (tool limit) before passivation however it reduced to ∼2 kV after Si3N4surface passivation and field plate deposition. The breakdown voltage and on-resistance demonstrated a strong linear correlation in a scattered plot of ∼50 measured transistors. The fabricated transistors were electrically characterized and benchmarked against the state-of-the-art high-voltage (> 1 kV) Al-rich (>40%) AlGaN-channel transistors in breakdown voltage and on-resistance, indicating significant progress. 
    more » « less
  3. Free, publicly-accessible full text available November 1, 2026